Low-frequency dispersive estimates for the Schrödinger group in higher dimensions

نویسندگان

  • Simon Moulin
  • Georgi Vodev
چکیده

For a large class of real-valued potentials, V (x), x ∈ R, n ≥ 4 , we prove dispersive estimates for the low frequency part of e Pac, provided the zero is neither an eigenvalue nor a resonance of −∆+ V , where Pac is the spectral projection onto the absolutely continuous spectrum of −∆ + V . This class includes potentials V ∈ L(R) satisfying V (x) = O ( 〈x〉−(n+2)/2−ǫ ) , ǫ > 0. As a consequence, we extend the results in [4] to a larger class of potentials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High frequency dispersive estimates for the Schrödinger equation in high dimensions

We prove optimal dispersive estimates at high frequency for the Schrödinger group for a class of real-valued potentials V (x) = O(〈x〉−δ), δ > n−1, and V ∈ Ck(R), k > kn, where n ≥ 4 and n−3 2 ≤ kn < n 2 . We also give a sufficient condition in terms of L 1 → L∞ bounds for the formal iterations of Duhamel’s formula, which might be satisfied for potentials of less regularity.

متن کامل

The Cauchy Problem for the Nonlinear Schrödinger Equation on a Compact Manifold

We discuss the wellposedness theory of the Cauchy problem for the nonlinear Schrödinger equation on compact Riemannian manifolds. New dispersive estimates on the linear Schrödinger group are used to get global existence in the energy space on arbitrary surfaces and three-dimensional manifolds, generalizing earlier results by Bourgain on tori. On the other hand, on specific manifolds such as sph...

متن کامل

Dispersive estimates for the Schrödinger equation in dimensions four and five

We prove optimal (that is, without loss of derivatives) dispersive estimates for the Schrödinger group e ) for a class of real-valued potentials V ∈ Ck(R), V (x) = O(〈x〉), where n = 4, 5, k > (n− 3)/2, δ > 3 if n = 4 and δ > 5 if n = 5.

متن کامل

Dispersive Estimates for the Schrödinger Equation for C

We investigate L → L∞ dispersive estimates for the Schrödinger equation iut − ∆u + V u = 0 in odd dimensions greater than three. We obtain dispersive estimates under the optimal smoothness condition for the potential, V ∈ C(n−3)/2(Rn), in dimensions five and seven. We also describe a method to extend this result to arbitrary odd dimensions.

متن کامل

A Counterexample to Dispersive Estimates for Schrödinger Operators in Higher Dimensions

In dimension n > 3 we show the existence of a compactly supported potential in the differentiability class C, α < n−3 2 , for which the solutions to the linear Schrödinger equation in R, −i∂tu = −∆u+ V u, u(0) = f, do not obey the usual L → L∞ dispersive estimate. This contrasts with known results in dimensions n ≤ 3, where a pointwise decay condition on V is generally sufficient to imply dispe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2007